3.429 \(\int \frac{1}{x^4 (8 c-d x^3)^2 \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=124 \[ \frac{5 d \sqrt{c+d x^3}}{864 c^3 \left (8 c-d x^3\right )}-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}+\frac{11 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{10368 c^{7/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{384 c^{7/2}} \]

[Out]

(5*d*Sqrt[c + d*x^3])/(864*c^3*(8*c - d*x^3)) - Sqrt[c + d*x^3]/(24*c^2*x^3*(8*c - d*x^3)) + (11*d*ArcTanh[Sqr
t[c + d*x^3]/(3*Sqrt[c])])/(10368*c^(7/2)) + (d*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(384*c^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.10125, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {446, 103, 151, 156, 63, 208, 206} \[ \frac{5 d \sqrt{c+d x^3}}{864 c^3 \left (8 c-d x^3\right )}-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}+\frac{11 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{10368 c^{7/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{384 c^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(5*d*Sqrt[c + d*x^3])/(864*c^3*(8*c - d*x^3)) - Sqrt[c + d*x^3]/(24*c^2*x^3*(8*c - d*x^3)) + (11*d*ArcTanh[Sqr
t[c + d*x^3]/(3*Sqrt[c])])/(10368*c^(7/2)) + (d*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(384*c^(7/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (8 c-d x^3\right )^2 \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{x^2 (8 c-d x)^2 \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}-\frac{\operatorname{Subst}\left (\int \frac{2 c d-\frac{3 d^2 x}{2}}{x (8 c-d x)^2 \sqrt{c+d x}} \, dx,x,x^3\right )}{24 c^2}\\ &=\frac{5 d \sqrt{c+d x^3}}{864 c^3 \left (8 c-d x^3\right )}-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}+\frac{\operatorname{Subst}\left (\int \frac{-18 c^2 d^2+5 c d^3 x}{x (8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{1728 c^4 d}\\ &=\frac{5 d \sqrt{c+d x^3}}{864 c^3 \left (8 c-d x^3\right )}-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}-\frac{d \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^3\right )}{768 c^3}+\frac{\left (11 d^2\right ) \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{6912 c^3}\\ &=\frac{5 d \sqrt{c+d x^3}}{864 c^3 \left (8 c-d x^3\right )}-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}-\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{384 c^3}+\frac{(11 d) \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{3456 c^3}\\ &=\frac{5 d \sqrt{c+d x^3}}{864 c^3 \left (8 c-d x^3\right )}-\frac{\sqrt{c+d x^3}}{24 c^2 x^3 \left (8 c-d x^3\right )}+\frac{11 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{10368 c^{7/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{384 c^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.133074, size = 97, normalized size = 0.78 \[ \frac{\frac{12 \sqrt{c} \sqrt{c+d x^3} \left (36 c-5 d x^3\right )}{d x^6-8 c x^3}+11 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )+27 d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{10368 c^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(8*c - d*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

((12*Sqrt[c]*(36*c - 5*d*x^3)*Sqrt[c + d*x^3])/(-8*c*x^3 + d*x^6) + 11*d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]
+ 27*d*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(10368*c^(7/2))

________________________________________________________________________________________

Maple [C]  time = 0.014, size = 926, normalized size = 7.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x)

[Out]

-1/6912*I/d/c^4*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2
*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+
1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*
3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/
2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d
^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,
(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*
d-8*c))+1/64*d^2/c^2*(-1/27/d/c*(d*x^3+c)^(1/2)/(d*x^3-8*c)-1/486*I/d^3/c^2*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*
d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d
^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d
^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-
(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^
2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^
(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)
+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c)))+1/64/c^2*(-1/3*(d*x^3+c)^(1/2)/c/x^3+1/3*
d*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(3/2))-1/384*d*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(7/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{d x^{3} + c}{\left (d x^{3} - 8 \, c\right )}^{2} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)^2*x^4), x)

________________________________________________________________________________________

Fricas [A]  time = 1.78352, size = 653, normalized size = 5.27 \begin{align*} \left [\frac{11 \,{\left (d^{2} x^{6} - 8 \, c d x^{3}\right )} \sqrt{c} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 27 \,{\left (d^{2} x^{6} - 8 \, c d x^{3}\right )} \sqrt{c} \log \left (\frac{d x^{3} + 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right ) - 24 \,{\left (5 \, c d x^{3} - 36 \, c^{2}\right )} \sqrt{d x^{3} + c}}{20736 \,{\left (c^{4} d x^{6} - 8 \, c^{5} x^{3}\right )}}, -\frac{27 \,{\left (d^{2} x^{6} - 8 \, c d x^{3}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right ) + 11 \,{\left (d^{2} x^{6} - 8 \, c d x^{3}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) + 12 \,{\left (5 \, c d x^{3} - 36 \, c^{2}\right )} \sqrt{d x^{3} + c}}{10368 \,{\left (c^{4} d x^{6} - 8 \, c^{5} x^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/20736*(11*(d^2*x^6 - 8*c*d*x^3)*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 27*
(d^2*x^6 - 8*c*d*x^3)*sqrt(c)*log((d*x^3 + 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 24*(5*c*d*x^3 - 36*c^2)*sqr
t(d*x^3 + c))/(c^4*d*x^6 - 8*c^5*x^3), -1/10368*(27*(d^2*x^6 - 8*c*d*x^3)*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt
(-c)/c) + 11*(d^2*x^6 - 8*c*d*x^3)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 12*(5*c*d*x^3 - 36*c^2)*s
qrt(d*x^3 + c))/(c^4*d*x^6 - 8*c^5*x^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(-d*x**3+8*c)**2/(d*x**3+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.13434, size = 153, normalized size = 1.23 \begin{align*} -\frac{1}{10368} \, d{\left (\frac{27 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-c}}\right )}{\sqrt{-c} c^{3}} + \frac{11 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} c^{3}} + \frac{12 \,{\left (5 \,{\left (d x^{3} + c\right )}^{\frac{3}{2}} - 41 \, \sqrt{d x^{3} + c} c\right )}}{{\left ({\left (d x^{3} + c\right )}^{2} - 10 \,{\left (d x^{3} + c\right )} c + 9 \, c^{2}\right )} c^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-1/10368*d*(27*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c^3) + 11*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt
(-c)*c^3) + 12*(5*(d*x^3 + c)^(3/2) - 41*sqrt(d*x^3 + c)*c)/(((d*x^3 + c)^2 - 10*(d*x^3 + c)*c + 9*c^2)*c^3))